Simulating the eRHIC Beam Line with Geant4 in Fun4All

Nils Feege

sPHENIX Cold QCD Topical Group Meeting Brookhaven National Laboratory, January 17, 2017

Work-in-progress linac-ring eRHIC design near IR

Implementation of beam line magnets in Fun4all / Geant4

Branch: BeamlineMagnet ▼ Upload files Find file History

sPHENIX-coresoftware / simulation / g4simulation / g4detectors /

This branch is 3 commits ahead, 18 commits behind sPHENIX-Collaboration:master.			① Compare
nfeege Add proper units to field values		Latest commit 40b54	70 5 days ago
Makefile.am	Add new detector subsystem to model beam line magnets (i.e. upstream	1	6 days ago
PHG4BeamlineMagnetDetector.cc	Add proper units to field values		5 days ago
PHG4BeamlineMagnetDetector.h	Add new detector subsystem to model beam line magnets (i.e. upstream	١	6 days ago
PHG4BeamlineMagnetSubsystem	Add rotation of beamline magnet based on parameters		5 days ago
PHG4BeamlineMagnetSubsystem	Add new detector subsystem to model beam line magnets (i.e. upstream	١	6 days ago
PHG4BeamlineMagnetSubsystem	Add new detector subsystem to model beam line magnets (i.e. upstream	1	6 days ago

- Cylinder shaped magnet with cylindrical aperture
- Size, position, rotation w.r.t. nominal beam line
- Fixed field dipole / fixed gradient quadrupole

Implementation of beam line magnets in Fun4all / Geant4

Test of new beam line magnet implementation

particle p(GeV)		angle(mrad)	z(mm)
neutron	250	+4	30000
proton	250	0	30000
proton	250	+5	30000
proton	250*0	.8 0	30000

x_Brett(mm)		
120.8		
279.2		
336.8		
341.6		

x_Geant4(mm) 120.0 275.5 329.8 333.7

Implementation of beam line magnets in Fun4all / Geant4

You can find the code on github:

https://github.com/nfeege/sPHENIX-coresoftware branch: "BeamlineMagnet"

and a Fun4All_EICIR.C macro using it at:

https://github.com/nfeege/sPHENIX-macros branch: "eRhicIR"

Code clean-up in progress, plan to create pull request to sPHENIX base repository soon.

Will ask BNL CAD / Magnet Division for preliminary layout of beam line up to ~50 m away from IP.

ADDITIONAL SLIDES

Placing beam line magnets in Fun4All / Geant4

```
protons, Draft linac-ring lattice V3.00, E_e = n/a, E_p=249.358GeV
   Source: 21-Apr-2016 from Brett Parker
##
## Notes: this is still a draft version with only the first few forward side magnets
   magnet_name1 center_x[m] center_y[m] center_z[m] aperture_radius[m] length[m] angle[mrad]
                                                                                                B[T]
                                                                                                       gradient[T/m]
                   0.00500
                               0.00
                                            5.70
                                                                                     -14.0
       00HF
                                                         0.041
                                                                         1.600
                                                                                                           129.00
                                                                                                 0.000
                               0.00
                                            8.55
                                                                         3.000
                                                                                     -14.0
       01HF
                   0.00900
                                                         0.060
                                                                                                0.000
                                                                                                           -86.00
       B0HF
                               0.00
                                           11.40
                                                                         1.600
                                                                                     -14.0
                                                                                                4.055
                   0.00500
                                                         0.066
                                                                                                            0.00
       02HF
                   0.00955
                               0.00
                                           13.65
                                                         0.077
                                                                         1.800
                                                                                      7.8
                                                                                                0.000
                                                                                                           59.50
                                           16.35
                               0.00
                                                         0.092
                                                                         2.500
                                                                                      -4.0
                                                                                                4.059
       B1HF
                   0.02261
                                                                                                            0.00
```